
Computer Networks 50 (2006) 2271–2285

www.elsevier.com/locate/comnet
High-performance switching based on buffered crossbar fabrics

Lotfi Mhamdi a,*, Mounir Hamdi b, Christopher Kachris a,
Stephan Wong a, Stamatis Vassiliadis a

a Computer Engineering Laboratory, Delft University of Technology, The Netherlands
b Department of Computer Science, The Hong Kong University of Science and Technology, Clear Water Bay,

Sai Kung, Kowloon, Hong Kong

Received 28 July 2004; received in revised form 29 April 2005; accepted 1 September 2005
Available online 29 September 2005

Responsible Editor: G. Parr
Abstract

As buffer-less crossbar scheduling algorithms reach their practical limitations due to higher port numbers and data
rates, internally buffered crossbar (IBC) switches have gained a lot of interest recently due to their great potential in solving
the complexity and scalability issues faced by their buffer-less predecessors. The IBC switching architecture combined with
the virtual output queueing (VOQ) architecture was shown, through distributed scheduling algorithms, to be able to sus-
tain the current and expected increases in Internet throughput rates. Due to the architectural similarity between the input
queued (IQ) and IBC switches, all the algorithms proposed for the latter were just a simple mapping of earlier algorithms
proposed for the former. In this paper, we propose a set of scheduling schemes that are purely advocated for the VOQ/IBC
switch architecture. We first address the issue of the internal buffers importance in the arbitration process. We propose a
weighted scheduling algorithm, named Critical internal Buffer First (CBF), which takes full advantage of the internal buffer
elements and makes its decision exclusively on the internal buffer information. Second, in order to simplify the scheduling
scheme and make it practical, we propose a class of scheduling algorithms, named Current Arrival First–Priority Removal

(CAF–PRMV) that use priority levels instead of weights. We argue that the interaction, through the internal buffer ele-
ment, between the input and output schedulers is very important in designing such practical and highly scalable schemes
for the IBC switching architecture. Our hardware implementation, in reconfigurable logic, shows that our CAF–PRMV
class of algorithms can sustain a 10 Gbps line speed for a 32 · 32 VOQ/IBC switch.
� 2005 Elsevier B.V. All rights reserved.

Keywords: Buffered crossbar fabric; Matched scheduling; Priority
1389-1286/$ - see front matter � 2005 Elsevier B.V. All rights reserved

doi:10.1016/j.comnet.2005.09.001

* Corresponding author. Tel.: +31 15 27 89 656.
E-mail addresses: lotfi@ce.et.tudelft.nl (L. Mhamdi), hamdi@

cs.ust.hk (M. Hamdi).
1. Introduction

Traditionally, the difference in switches� design
was in the way the queuing function is implemented.
There has been extensive research work in this
area and many switching architectures have been
.

mailto:lotfi@ce.et.tudelft.nl
mailto:hamdi@cs.ust.hk
mailto:hamdi@cs.ust.hk

. ..

N
VOQ N,1

1

..

. . .
. . .

1 N

Arbiter Arbiter

A
rbiter

A
rbiter

. . .

Internal Crosspoint Buffer (XP)Flow Control

Input/Output Arbiters

VOQ 1,1

VOQ N,N

VOQ 1,N

Fig. 1. The VOQ/IBC architecture.

2272 L. Mhamdi et al. / Computer Networks 50 (2006) 2271–2285
proposed, such as output-queued (OQ) and input-
queued (IQ) switches. It is well known that OQ
switches are highly desirable for their optimal per-
formance and QoS guarantees [1,2]. However, the
high internal speedup coupled with the limitation
in memory access time prohibits the OQ to scale
to even a medium sized switch. On the other hand,
IQ switches have gained more interest because of
their low cost and high scalability [3]. While the
head-of-line (HoL) blocking problem limits the
achievable throughput of an IQ switch to approxi-
mately 58.6% [4], the well-known VOQ architecture
[5,3,6] was proposed instead and has improved the
switching performance of FIFO-based IQ by several
orders of magnitude, hence making IQ switches
even more attractive.

Despite its popularity, the VOQ solution has its
own problems [7,3]. A centralized scheduler is re-
quired to configure the switch so that, at each time
slot, each input sends one cell to at most one output
and each output receives one cell from at most one
input. In doing so, the scheduler needs to resolve
two potential blockings: input blocking and output
blocking. These blockings make the task of the
scheduler complicated and the packets delay unpre-
dictable. An extensive amount of research work has
been done and a plethora of scheduling algorithms
has been proposed [5,8,9,3,10–12]. Unfortunately,
for high-bandwidth VOQ switches, all these algo-
rithms are either too complex to run at high speed
[3] or fail to perform well under practical traffic pat-
terns such as non-uniform. This is mainly attributed
to the centralized design of these schedulers and to
the nature of the crossbar-based architecture.
Therefore, only few of these algorithms were dem-
onstrated to be practical and shown to achieve high
throughput under some specific traffic patterns [5,3].

Internally buffered crossbar (IBC) switches have
been considered as a viable alternative to buffer-less
crossbar switches to improve the switching perfor-
mance. The presence of internal buffers improves
drastically the overall performance of the switch
due to the advantages it offers. First, the adoption
of internal buffers makes the scheduling totally dis-
tributed, hence reducing dramatically the arbitra-
tion complexity and making it linear. Second, and
most importantly, these internal buffers reduce (or
avoid) the output contention. Meaning, they allow
the inputs to send cells to an output irrespective of
simultaneous cells transfer to the same output.
While there have been many architectures for the
(IBC) switching architecture [13–15], our focus in
this article is on IBC with input VOQs. A buffered
crossbar switch combined with input VOQ was first
introduced in [16] as depicted in Fig. 1. In the
remainder of this article, we refer to this architec-
ture as VOQ/IBC architecture.

In the VOQ/IBC architecture, a scheduling cycle
consists of three independent phases: input schedul-
ing, output scheduling and delivery notification. Re-
cently, there have been many scheduling algorithms
proposed. These algorithms have been compared to
just the conventional buffer-less crossbar-based
switches. As expected, they have been shown to ex-
hibit much better performance. However, there is
still a lot of room for coming up with better algo-
rithms (both in terms of performance and hardware
complexity) for the VOQ/IBC architecture because
the proposed algorithms are just simple mapping
of earlier algorithms proposed for the buffer-less
crossbar switches into the new VOQ/IBC architec-
ture. Moreover, none of the schemes presented in
the literature has addressed the issue of the interac-
tion between the internal buffers and the input line
cards. In fact, as will be illustrated in this paper,
by carefully considering the interaction between
the VOQ and the internal queues of the VOQ/IBC
architecture, we can design matched pairs of
input/output arbitration algorithms that outper-
form the straightforward algorithms even with less
hardware complexity.

In this paper, we propose a set of scheduling
algorithms that take full advantage of the VOQ/
IBC switching architecture. The CBF scheduling
scheme is proposed first. It is based on the Youngest

internal Buffer First (YBF) at the input side with a

L. Mhamdi et al. / Computer Networks 50 (2006) 2271–2285 2273
scheme based on the Oldest internal Buffer First

(OBF) at the output side. We show that the infor-
mation on the internal buffers is sufficient for the
schedulers to make effective decisions. In an attempt
to further reduce the scheduling complexity and
make it more practical, we subsequently propose a
set of practical scheduling algorithms. They are
named Current Arrival First–Priority Removal

(CAF–PRMV). These algorithms are, in fact, an
approximation of LIFO (Last-In-First-Out). Their
main advantage lies in their stateless information
exchange (queue occupancies, HoL waiting time,
etc.) making them simple to implement. As will be
shown through simulation, they achieve very high
throughput under both uniform and non-uniform
distributed Bernoulli arrivals. They outperform the
existing algorithms under all traffic patterns (uni-
form Bernoulli, bursty and non-uniform Bernoulli
arrivals). In addition to the delay throughput per-
formances, other relevant performance metrics were
studied such as input VOQs occupancies. Our
scheme exhibited much less queues occupancies
among all the schemes presented. An FPGA based
hardware implementation was presented and the re-
sults showed that our class of algorithms can be
implemented in a 32 · 32 VOQ/IBC switch with
each port operating at 10 Gbps (OC � 192).

The remainder of the paper is organized as fol-
lows: Section 2 presents the related work and points
out the advantages and limitations of existing
schemes. In Section 3, we introduce the CBF scheme
along with a its performance study with comparison
to the previously existing schemes. Section 4 con-
tains a detailed presentation of our set of practical
scheduling schemes, CAR_PRMV. We propose
variations of the output scheme, PRMV, based on
priority levels and we present an experimental study
with comparison to state of the art algorithms. Sec-
tion 5 gives a possible hardware implementation of
our scheme. Finally, Section 6 concludes the paper.

2. Related work

The internally buffered crossbar switching archi-
tecture has attracted a lot of attention due to the po-
tential it offers in solving the scheduling complexity
faced by the IQ switching architecture. As a result,
an important amount of research work has been
advocated to this architecture. These research re-
sults can be classified into two main topics. The first
one is related to proving OQ emulation by a VOQ/
IBC switch while the second topic was to propose a
wide range of scheduling schemes for the VOQ/IBC.
Our current paper falls into the latter topic, that is
proposing scheduling algorithms for the VOQ/IBC
running at a speed up of one.

Very interesting results have been proposed
showing that a VOQ/IBC, running twice as fast as
the line rate, can emulate a FIFO OQ switch [17].
Other results [18] proved that a VOQ/IBC with a
speed up of two can emulate a broad class of algo-
rithms (i.e., FCFS, Strict Priority, Early Deadline
First) operating an OQ switch. A more recent and
extended result [19] showed that a VOQ/IBC switch
with two times speed up can provide 100% through-
put, rate and delay guarantees.

Alongside the work on OQ emulation, there have
been many scheduling schemes proposed for the
VOQ/IBC architecture. These algorithms can be
classified into weight-based schemes [16,20] and
Round Robin (RR) based schemes [21,22]. In [16],
a scheme based on the Oldest Cell First (OCF) at
the input as well as the output scheduling was pro-
posed. While this scheme achieves high throughput
under uniform Bernoulli arrivals, the same benefits
were not achieved for the non-uniform case. A
scheme based on the Longest Queue First (LQF)
in the input and a round robin (RR) arbitration at
the output was presented in [20] and was proven,
through a fluid model, to be stable under uniform
input traffic. In addition to its rather complex input
scheduling (LQF), this scheme may lead to perma-
nent queue starvation. A set of round robin schemes
was proposed [21,22] and they were shown, through
simulation, to achieve very good performance under
uniform arrivals. These schemes are desirable be-
cause of their simplicity in hardware and fairness,
however they experience the same problem as in
[16] and perform poorly under non-uniform traffic
patterns. As mentioned earlier, none of the schemes
proposed for the VOQ/IBC has truly taken full
advantage of the features the architecture offers.
In this paper, we fill this gap and propose scheduling
algorithms that are purely dedicated to the VOQ/
IBC switching architecture.

3. The critical internal buffer first algorithm (CBF)

The proposed CBF scheme is equivalent to our
previously proposed scheme, named the Most Crit-

ical internal Buffer First (MCBF) [23]. Before pre-
senting the CBF algorithm, we first introduce, for
ease of explanation, some notations that will be
used in the remainder of this article.

2274 L. Mhamdi et al. / Computer Networks 50 (2006) 2271–2285
3.1. Notations

We consider the switch model depicted in Fig. 1.
Fixed size packets, or cells, are considered. Upon
the arrival of variable length packets to the switch,
they are segmented into cells for internal processing
and re-assembled before leaving the switch. A pro-
cessing cycle has fixed duration, called time slot (time
cell). There are N input line cards; each one main-
tains N logically separated VOQs. When a packet
(cell), destined to output j, 1 6 j 6 N, arrives to the
input card i, 1 6 i 6 N, it is held in VOQi,j. The fol-
lowing notations will be used throughout the paper:

• The internal fabric consists of N2 buffered cross-
points (XP). A crosspoint XPi,j, holds cells com-
ing from input i and going to output j. If the cell
has been transferred from the input VOQi,j to the
internal buffer XPi,j at time tarrival_to_fabric, its age
is noted by: XPAi,j = tnow � tarrival_to_fabric.

• Eligible input VOQ (EVOQ): A VOQi,j, is said to
be eligible (noted EVOQi,j) for being scheduled in
the input scheduling process if it is not empty
and the internal buffer XPi,j is empty (or not ful l).

• The line of crosspoint buffers LXPBi is the set of
the internal buffers XPi,j that correspond to the
same input, i, and holding cells for all outputs.
The age of all the HoL cells queued in LXPBi

is equal to the internal buffer line age and defined
by: BLAi =

P
j(XPAi,j).

• The column crosspoint buffer CXPBj is the set of
the internal buffers XPi,j that correspond to the
same output, j, and receiving cells from all inputs.
NCBj is the number of cells queued in CXPBj.
The age of all the HoL cells queued in CXPBj

is equal to the internal buffer column age and
defined by: BCAj =

P
i(XPAi,j).

3.2. Motivation

It is of note that the scheduling process is, na-
tively, divided into two phases: input scheduling
and output scheduling. Of major importance is the
matching of the input/output scheduling in pairs
so that they complement each other. Therefore,
the choice of which output scheduling is best suited
to which input scheduling is very important. To this
end, the internal buffer element is of key importance
in finding matched scheduling because of its shared
nature. No output is idle as long as NCBj P 1;
1 6 j 6 N. To keep the outputs as busy as possible,
a good strategy is to maintain a load balancing
among the internal buffers. This is the intuition be-
hind the proposed algorithm that serves the most
critical buffer first. It favors the most recently served
internal buffer in the input side while the output
gives priority to the least recently served internal
buffer. Consequently, we have ensured that the
two scheduling phases are matched and the second
complements the job of the first. More interestingly,
we do not need to maintain any information during
both scheduling except the information about the
internal buffers. In fact, the CBF scheme is a per cell
waiting time scheduling scheme that is equivalent to
our previously proposed per internal buffer occu-
pancy scheduling scheme, MCBF [23]. The follow-
ing section describes our proposed scheme.

3.3. CBF specification

The CBF scheduling scheme is based on the
Youngest internal Buffer First (YBF) policy at the
input side, whereas, the output arbitration is based
on the Oldest internal Buffer First (OBF). Through-
out the remainder of the paper, we will be using
both CBF and YBF–OBF acronyms interchange-
ably to refer to the same algorithm. Using CBF will
refer to the whole scheme (input and output side)
while using YBF (respectively OBF) will refer to
the input scheduling (respectively output schedul-
ing). The CBF scheme, especially its output schedul-
ing OBF, is equivalent to the buffer-less Oldest Port
First (OPF) Algorithm [24]. The output scheduling,
OBF, performs its arbitration based on the input
waiting time function used by OPF [24], defined as
the waiting time sum of all HoL cells at the input
and waiting for the same output. Our input schedul-
ing YBF, however, uses an opposite arbitration cri-
terion to the output waiting time function used by
OPF [24]. Instead of giving priority to the request
with the greatest output waiting function as in
OPF, YBF gives priority to the request with the
smallest output waiting time instead. In order to
achieve fairness, both YBF and OBF maintain each
a highest priority pointer to break ties in the pres-
ence of conflicts. Each input (respectively output)
pointer is initialized to the index of the input
(respectively output) it belongs to. The specification
of both scheduling algorithms is as follows:

• Input scheduling (YBF)
– For each input i: Starting from the highest pri-

ority pointer�s location, select the first EVOQ

L. Mhamdi et al. / Computer Networks 50 (2006) 2271–2285 2275
corresponding to: minj{BCAj} and send its
HoL cell to the internal buffer (XPi,j). Move
the highest priority pointer to the location
(j + 1)(modN).

• Output scheduling (OBF)
– For each output j: Starting from the highest

priority pointer�s location, select the first XPi,j

corresponding to: maxi{BLAi} and send its
HoL cell to the output. Move the highest pri-
ority pointer to the location (i + 1)(mod N).
10
2

10
3

A
ve

ra
ge

 D
el

ay

32x32 switch under Bursty uniform traffic

YBF-OBF
LQF-RR
OCF-OCF

l = 100

l = 50
l = 10
3.4. Performance study

This section presents a delay performance study
for the algorithms presented above using a 32 · 32
buffered crossbar switch. The same experiments� set-
tings will be used throughout the remainder of this
article. Delay is measured as the period of time a cell
is kept waiting in an input/internal/output buffer be-
fore being scheduled. Each point in the resulting fig-
ures is obtained for 500,000 time slots (cell time),
and the statistics are gathered from the (50,000)th
time slot. Average delay is calculated from all the
cells output during this period of time. Normalized
load means the percentage of time slots, which have
cells coming in, averaged over all inputs. The CBF
algorithm is compared to the LQF–RR and OCF–
OCF algorithms respectively under bursty uniform
traffic and unbalanced traffic. The unbalanced traf-
fic used in this paper is the same as the one used in
[21].

A stability performance study was carried out
along with the delay study. As it was presented in
[25], the input queues occupancies can serve to
prove the stability of the scheduling algorithm. That
is, if under a service policy (scheduling algorithm)
X, one can show that E(kL(n)k) <11, he can con-
clude that X is stable. kL(n)k is the l � two norm
vector representing the occupancy of the VOQs a
time n and defined as follows:

kLnk ¼ VOQ1;1ðnÞ
2 þ � � � þ VOQ1;NðnÞ

2 þ � � �
�

þ VOQN ;1ðnÞ
2 þ � � � þ VOQN ;NðnÞ

2
�1=2

In this section, we just present, through simulation,
the occupancy of the VOQs under the above-men-
tioned scheduling algorithms. This study can be
1 The expected value of the l � two norm vector, L(n),
representing the input VOQs occupancies is finite.
used to find a practical upper bound on the input
buffer space that a scheduling algorithm needs to
prevent congestion.

Fig. 2 depicts the delay performance of each of
the algorithms with burst lengths, l, equal to 10,
50 and 100 respectively. YBF–OBF shows the best
performance amongst all the other algorithms. At
99% load and burst length of 10, YBF–OBF has
an average queuing delay less than 80% that of
LQF–RR. The same advantage is seen with burst
length equal to 50 and 100 respectively. YBF–
OBF has the best resistance to the burstiness effect.
As the burst length increases, the growth of the
average delay of YBF–OBF is slower than the rest
of the other simulated algorithms. With a burst
length of 50% and at 99% load YBF–OBF has an
average delay of 2524, then LQF–RR with an aver-
age delay of 3014 and finally OCF–OCF with an
average delay of 3311.

As for the stability performance, illustrated in
Fig. 3, YBF–OBF has surprisingly the best perfor-
mance amongst all despite the fact that it maintains
no state information about the input VOQs when it
does its arbitration. YBF–OBF has always the
smallest norm of the VOQs occupancy vector,
kL(n)k, irrespective of the burst length or the traffic
load. We can see that, for a burst length of 10 for
example, YBF–OBF has the smallest queues� norm,
about 1670. However, LQF–RR has a vector with
norm equals 1937 and OCF–OCF equals 1946.

Fig. 4 depicts the delay performance under the
unbalanced traffic model. As shown below, YBF–
OBF no longer has the smallest delay. This result
0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Normalized Load

Fig. 2. Delay performance under Bursty uniform traffic, and
different burst lengths.

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

10
2

10
3

10
4

L
(5

00
00

0)

Normalized Load

32x32 switch under Bursty uniform traffic

YBF-OBF
LQF-RR
OCF-OCF

l = 100

l = 50
l = 10

Fig. 3. Stability performance under Bursty uniform traffic, and
different burst lengths.

2276 L. Mhamdi et al. / Computer Networks 50 (2006) 2271–2285
is somehow expected because YBF–OBF is a state-
less scheme that uses no state information at all
about the input VOQs during the arbitration pro-
cess. Moreover, since the internal buffer size is only
one cell-length, this element of information seems to
be not very efficient so that CBF can make effective
decision.

It is to note that the YBF–OBF is expected to
have much better performance if we increase the
internal buffer size. The reason is, as mentioned ear-
lier, as the internal buffer size increases, YBF–OBF
will emulate more the (OPF) algorithm [24]. To see
this effect, we simulated the YBF–OBF with the rest
of the algorithms under non-uniform traffic (unbal-
anced traffic) with a 32 · 32 switch and an 8-inter-
0. 55 0. 6 0. 65 0. 7 0.75 0. 8 0.85 0. 9 0.95 1

10
0

10
1

10
2

A
ve

ra
ge

 D
el

ay

Normalized Load

32x32 switch under Unbalanced traffic, w=0.5

YBF-OBF
LQF-RR
OCF-OCF

Fig. 4. Delay performance under non-uniform traffic, w = 0.5.
nally buffered crossbar fabric (internal buffer
size = 8 cells).

As illustrated in Fig. 5, the delay performance of
YBF–OBF is the best as expected because it is get-
ting closer to the buffer-less OPF as the internal buf-
fer size increases. The average queuing delay of CBF
has improved 374 times. However both LQF–RR
and OCF–OCF have an improvement factor of less
than 2. At 99% load, YBF–OBF has an average
queuing delay of 34 time slots, then LQF–RR with
an average delay of 57, thereafter OCF–OCF with a
delay equals to 71.

As shown above, we can see that the CBF scheme
is better than the state-of-the art scheduling
schemes, such as LQF–RR and OCF–OCF. It takes
full advantage of the internal buffers elements when
making its arbitration. One drawback with the CBF
scheme appears to be its hardware implementation.
If we consider the input schedulers to take place at
the ingress part for example, this means that high
information exchange between the line cards and
the fabric will be dedicated only for the sake of
scheduling and therefore result in wasted internal
bandwidth. While, the hardware implementation
problem seems to be overcome by careful design
concerning especially, the input arbiters, the CBF
scheme is a weighted scheme and the time stamping
mechanism performed by CBF might be considered
as too costly.

Recall that the VOQ/IBC has key advantages
that can serve to ensure that the scheduling algo-
rithm can be simple and efficient at the same time.
Our goal is to design scheduling schemes with the
least hardware requirement while maintaining good
0.75 0.8 0.85 0.9 0.95 1

10
0

10
1

10
2

A
ve

ra
ge

 D
el

ay

Normalized Load

32x32 switch under Unbalanced traffic, w=0.5

YBF-OBF
LQF-RR
OCF-OCF

Fig. 5. Delay performance of 8-Internally buffered crossbar
switch under Bernoulli non-uniform traffic, w = 0.5.

L. Mhamdi et al. / Computer Networks 50 (2006) 2271–2285 2277
performance. To this end, in the following section,
we propose the CAF_PRMV group of new schedul-
ing algorithms. They meet both our simple hard-
ware requirement and satisfy our goal to achieve
good performance.
4. The current arrival first–priority removal

algorithms

In this section, we propose our group of practical
algorithms: Current Arrival First–Priority Removal

(CAF_PRMV). The input scheduling gives priority
to the newly arriving packets while the output
scheduling completes this task by serving the re-
cently arrived packets to the internal buffer. The
intuition behind this is to overcome the lack of per-
formance under the non-uniform traffic without
using any weight functions or state information.
The existing algorithms either perform poorly under
non-uniform traffic or require sorting. The idea of
serving the newly arriving cells favors the input that
has more often cells coming in and did not punish
the uniformly arriving cells, hence tackle the non-
uniform traffic while being stateless. From above,
we knew that an input (respectively output) schedul-
ing scheme could not perform well so long as it is
not matched with the appropriate output (respec-
tively input) scheduling scheme. To this end,
CAF_PRMV was designed to be a matched pair
of input/output scheduling. That is the output
scheduling, PRMV, is complementary to the input
scheduling, CAF. To better understand this, some
different schemes are presented and will be analyzed.
The input scheduling, CAF, will remain the same,
the changes are done at the output side.
2 The first bit means that the packet, P, is new, while the second
bit indicates the occupancy of the VOQi,j holding P.
4.1. CAF specification

At each time slot, the Current Arrival First
(CAF) algorithm checks whether there is a new cell
arriving at the input port. To accomplish this task in
the output scheduling, CAF assigns a priority level
to each cell leaving the input port. This level will de-
cide the priority (urgency) of that cell in the output
scheduling phase. The use of priority levels is an effi-
cient choice. First, the output-scheduling phase will
be much simpler and faster than sorting for exam-
ple. Second and most importantly, the adoption of
priority levels makes the implementation easy and
the hardware requirement simple. The specification
of the input scheduling CAF is as follows:
For each input i:

• If there is a currently arriving packet, P, to an eli-
gible VOQi,j.

• Then send its HoL packet to XPi,j with two prior-
ity bits2 as follows:
– If VOQi,j contains other packet(s) than P.
* Then set the two priority bits to 11.

* Else set the two bits to 10.
Else based on the highest priority pointer loca-
•
tion, serve the next eligible VOQi,j corresponding
to minj{NCBj}. The highest priority pointer is
incremented (mod N) to one location beyond
the selected input VOQi,j.
– If VOQi,j contains other packet(s) than P.
* Then set the two priority bits to 01.

* Else set these bits to 00.
We can see that the two priority bits create four
priority levels for a packet. Thus, when a packet, P,
leaves the input card, it has along with it its priority
level for being scheduled in the output scheduling
phase. According to these priority levels, a packet
could be new with a non-empty corresponding input
VOQi,j (priority 11), or it could be not new (old)
with non-empty corresponding input VOQi,j (prior-
ity 01), or it could be new but with empty corre-
sponding input VOQi,j (priority 10), or it could be
not new with empty corresponding input VOQi,j

(priority 00). These priority levels are summarized
in the following table.

From Table 1, many combinations could be envi-
sioned (4! = 24). However, to perfectly accomplish
the task of the input scheduling, CAF, many combi-
nations should be eliminated. For example, priority
level P4 can only be the lowest level. This is because
any output scheduling which gives priority to an old
internally buffered cell with empty corresponding
input VOQ cannot help CAF doing its job. Since
the input VOQ is empty, there should be no rush
in getting out that cell (queue stable and not con-
gested). It is more urgent to send out any other
packet with non-empty input VOQ. On the other
hand, priority level number one (P1) can only be
the highest priority among the four priority levels.
This is because any output scheduling scheme which
favors any priority level to the first one, leads to a
decrease in the performance of CAF, and therefore

Table 1
Priority level of a packet

Priority level New packet Non-empty VOQ

P1 1 1
P2 0 1
P3 1 0
P4 0 0

2278 L. Mhamdi et al. / Computer Networks 50 (2006) 2271–2285
will not be appropriate. An internally queued pack-
et that comes from a busy input VOQ (having cur-
rently new packet coming in) should be sent out
urgently. This avoids the VOQ from being con-
gested or unstable. Doing so, there are only
(2! = 2) different combinations left (depending on
P2 and P3 ranking of Table 1) and are as follows:

• C1 = (P1, P2,P3,P4): using this combination
means that packets are served based on the prior-
ity order3 P1, P2, P3, and P4.

• C2 = (P1, P3,P2,P4): using this combination
means that packets are served based on the prior-
ity order P1, P3, P2, and P4.

The output scheduling PRMV will then be con-
sisting of two different schemes depending on the
combination used. These two schemes are called
PRMV1 and PRMV2, respectively.

4.2. Specification of PRMV1

The specification of the output scheduling
PRMV1 is as follows:

For each output j:

• Starting from the highest priority pointer�s loca-
tion, select the next non-empty internal buffer
XPi,j giving preference based on C1. The highest
priority pointer is incremented (mod N) to one
location beyond the selected internal buffer
(XPi,j).
4.3. Specification of PRMV2

The specification of the output scheduling
PRMV2 is as follows:

For each output j:

• Starting from the highest priority pointer�s loca-
tion, select the next non-empty internal buffer
3 The highest priority level is inversely proportional to the
priority level index that is, P1 is the highest and P4 is the lowest.
XPi,j giving preference based on C2. The highest
priority pointer is incremented (mod N) to one
location beyond the selected internal buffer
(XPi,j).

4.4. PRMV variations

In this section, two other versions of PRMV are
investigated. Recall that the input scheduling and
the output scheduling are performed independently.
As shown before, when a packet, P, is scheduled at
the input, it takes along with it two priority bits
which will decide its priority for being scheduled
in the output scheduling phase. However, the prior-
ity bit relative to the state of VOQi,j that used to
hold P might not be accurate. To see this, let us con-
sider the following example: suppose that the cur-
rent time slot is Tnow. Suppose a packet P has
entered the switch at time Tpast and was scheduled
in the input scheduling during the same time slot,
Tpast —since CAF favors newly arriving cells—and
its VOQi,j was empty at time Tpast. Therefore, its
two priority bits are set to 10 (1: new packet and
0: empty VOQ). Thus, during each time slot T,
Tpast 6 T 6 Tnow, so long as P is still in the internal
buffer, XPi,j, it is considered as having an empty
corresponding input VOQi,j. However, VOQi,j

might receive new cells during the time interval
[Tpast + 1, Tnow]. With this situation happening, P

is treated unfairly among other packets since its pri-
ority levels do not match the reality. To avoid this
problem, an alternative to PRMV was proposed.
The idea is that the bit that records the state of a
VOQi,j is set at the moment of the output scheduling
and not during the input scheduling. Proceeding this
way solves the inaccuracy problem. One way to do
this is by checking the corresponding input VOQi,j

of every internally buffered packet that is consid-
ered for an output scheduling. Therefore, we have
the following two new versions of PRMV, called
Pr_Check1, Pr_Check2 one for each priority
scheme.

4.4.1. Specification of Pr_Check1

The specification of the output scheduling
Pr_Check1 is as follows:

For each output j:

• At each time slot, T, Do:
• Starting from the highest priority pointer�s loca-

tion, select the next non-empty internal buffer

0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

10

20

30

40

50

60

Av
er

ag
e

D
el

ay

Normalized Load

32x32 Switch under Bernoulli uniform traffic
Caf-Prmv1
Caf-Prmv2
Caf-Pr_Check1
Caf-Pr_Check2
RR-RR
Lqf-Rr
OCF-OCF

Fig. 6. Average delay under Bernoulli I.I.D. uniform traffic.

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

100

200

300

400

500

600

700

800

900

1000

Av
er

ag
e

D
el

ay

Normalized Load

32x32 Switch under Bursty Traffic
Caf-Prmv1
Caf-Prmv2
Caf-Pr_Check1
Caf-Pr_Check2
RR-RR
Lqf-Rr
OCF-OCF

Fig. 7. Delay performance under Bursty uniform traffic.

L. Mhamdi et al. / Computer Networks 50 (2006) 2271–2285 2279
XPi,j giving preference based on C1. The highest
priority pointer is incremented (mod N) to one
location beyond the selected internal buffer
(XPi,j).

4.4.2. Specification of Pr_Check2

The specification of the output scheduling
Pr_Check2 is as follows:

For each output j:

• At each time slot, T, Do:
• Starting from the highest priority pointer�s loca-

tion, select the next non-empty internal buffer
XPi,j giving preference based on C2. The highest
priority pointer is incremented (mod N) to one
location beyond the selected internal buffer
(XPi,j).

While Pr_Check seems to be better than
PRMV, this solution is not a practical solution.
The reason is that the output scheduler needs to
perform a checking cycle during each time slot.
This is undesirable due to the amount of informa-
tion exchanged. Moreover, Pr_Check performs
slightly better than PRMV and the difference is only
seen under light load. However, under heavy load,
their performances are very close, due to steady
state of the VOQs. This means that under heavy
load, almost all the VOQs have more than one
packet during each input scheduling cycle and
therefore the unfairness problem is almost self-
removed.

4.5. Performance study

The simulation results contained in this section
are obtained based on the same settings as in Sec-
tion 3.4. Fig. 6 shows the performance evaluation
the RR–RR, LQF–RR, and OCF–OCF along with
our group of proposed algorithms. All our proposed
algorithms have shorter queuing delay than all exist-
ing schemes. CAF–Pr_Check1 has the best perfor-
mance among all, with very small difference when
compared to CAF_Prmv1.

As for the performance under bursty traffic,
Fig. 7, our group of proposed algorithms has the
best performance among all the algorithms tested.
The largest delay among our algorithms was always
under 800. However, the delay for LQF–RR and
OCF–OCF is more than 900 each, and RR–RR is
888.
Fig. 8 shows the stability performance of the
input VOQs under bursty traffic. CAF–Pr_Check2
has the worst performance among all. The reason
of this low performance is due to the highest priority
given to the new arriving packet irrespective of the
state of its VOQ. However, in the event of no arriv-
als, CAF serves packets based on the minimum
occupied internal buffer.

In Fig. 9, the unbalanced coefficient, w, is fixed to
0.5. The output scheduling algorithms PRMV2 and
Pr_Chech2 perform less than the others because
they give priority to the newly coming packet irre-
spective of whether its VOQ is empty or not, and
this is not appropriate to the input scheduling
CAF. This is because, in many cases, CAF serves

0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1
0

50

100

150

200

250

300

350

400

450

500

L
(5

00
00

0)

Normalized Load

32x32 Switch under Non-Uniform Traffic

Caf-Prmv1
Caf-Pr_Check1
Lqf-Rr
Ocf-Ocf

Fig. 10. VOQs occupancies under unbalanced traffic (w = 0.5).

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

10
0

10
1

10
2

10
3

10
4

A
ve

ra
ge

 D
el

ay

Normalized Load

32x32 Switch under Non-Uniform Traffic

Caf-Prmv1
Caf-Prmv2
Caf-Pr_Check1
Caf-Pr_Check2
RR-RR
Lqf-Rr
OCF-OCF

Fig. 9. Delay performance under unbalanced traffic (w = 0.5).

0.75 0.8 0.85 0.9 0.95 1

500

1000

1500

2000

2500

3000

L
(5

00
00

0)

Normalized Load

32x32 under Bursty Traffic

Caf-Prmv1
Caf-Prmv2
Caf-Pr_Check1
Caf-Pr_Check2
RR-RR
Lqf-Rr
OCF-OCF

Fig. 8. VOQs occupancies under Bursty uniform traffic.

2280 L. Mhamdi et al. / Computer Networks 50 (2006) 2271–2285
packets based on the minimum occupied internal
buffer and not on the newly coming packet. Among
all, CAF–Pr_Check1 has the best performance,
thereafter CAF–PRMV1 and then LQF–RR and
OCF–OCF.

As for the VOQs occupancies, we omitted the
results of CAF_Prmv2, CAF_Check2, and RR–
RR as they are having infinite queues occupancies
respectively. However, as depicted in Fig. 10,
CAF–PRMV1 and CAF–Pr_Check1 have the min-
imum queues occupancies among all the algorithms.
Under a load less than 80%, all the schemes have the
same performance. CAF_Check1 maintains the
smallest queues occupancies under light load
(less than 90%), but as the load gets higher,
CAF_PRmv1, improves better than CAF_Check1.
This is because, as the load increases, the inaccuracy
problem, caused by the bit that records the VOQs
status, is self resolved. The reason is because, under
high load every VOQ will have more than one cell
and therefore it will not make any difference
whether or not a VOQs status checking phase is
performed.

To summarize, we note the following points.
First, the information about the arrival and the state
of the input VOQs is shown to be even more effective
than using weighted requests as with LQF–RR or
OCF–OCF. Second, while CAF_Prmv1 and CAF_
Check1 demonstrated the best overall performances
among all the schemes presented, we argue that
CAF_Prmv1 is a better choice than CAF_Check1.
As mentioned earlier, the checking operation that
CAF_Check1 performs each scheduling phase was
shown to be of no significant improvement given
the high internal bandwidth it consumes. In fact,
CAF_Prmv1 maintained a steady good perfor-
mance. This is in turn because of its efficient input
scheduling decision and its good output priority or-
der of scheduling. The input scheduling, CAF, bases
its decision on cells arrival, VOQs states and the
internal columns of crosspoint buffers occupation.
In the event of no arrivals to an eligible input
VOQ, CAF serves packets based on the minimum
occupied column of internal buffers.

L. Mhamdi et al. / Computer Networks 50 (2006) 2271–2285 2281
5. Hardware implementation

This section describes the hardware implementa-
tion of the CAF_PRMV class of algorithms for a
32 · 32 buffered crossbar switch. The design was
implemented in reconfigurable logic that is a low-
cost solution for rapid prototyping. The target de-
vice was the Xilinx Virtex II Pro XC2VP20 and
Non-empty VOQ

Non-empty VOQ

Non-empty VOQ

Non-empty VOQ

2
LUT

+

4 3

2
LUT

4 3

. .
 . 8 5 Decoder

3
CXPB-1

2
LUT

+

4 3

2
LUT

4 3

. .
 . 8 5 Decoder 3CXPB-32

. .
 .

. .
 .

Empty XP

Empty XP

Empty XP

Empty XP

Fig. 11. Input

. .
 . pr0

Pr0_or

. .
 . pr1 Pr1_or

. .
 . pr2

Pr2_or

. .
 . pr3

Pr3_or

32

32

32

32

32

32

32

32

New_packet

Non-empty VOQ
Non-empty XP

New_packet

Non-empty VOQ
Non-empty XP

New_packet

Non-empty VOQ
Non-empty XP

New_packet

Non-empty VOQ
Non-empty XP

Fig. 12. Outpu
we used the Xilinx ISE Platform 6.3 design flow.
The input and output arbiters are depicted in Figs.
11 and 12 respectively. Both input and output arbi-
ter use a programmable protocol encoder (PPE).
The PPE module is used to select a queue from a
number of eligible queues, based on an index poin-
ter. Our current design is based on the PPE pro-
posed by [26].
Grant

2

2

Column
Selection

32
Programmable

Priority
Encoder

Priority
Pointer

New_packet
Empty XP

. .
 .32

32

arbiter.

Programmable
Priority

Encoder

Priority
Pointer

Req

Grant
32

P
r0

_o
r

P
r1

_o
r

P
r2

_o
r

P
r3

_o
r

t arbiter.

Table 2
Input arbiter

Input arbiter Area (slices) Delay (ns)

1�s counters (32) 128 9.9
Column selection 16 9
PPE 84 13.2
Total 228 32.1

Table 3
Output arbiter

Output arbiter Area (slices) Delay (ns)

Priority selection 113 4
PPE 84 13.2
Total 197 17.2

2282 L. Mhamdi et al. / Computer Networks 50 (2006) 2271–2285
The output arbiter is depicted in Fig. 12. Four
different 32-bit vectors are created based on the
priority encoding. The elements of each vector are
or-ed in order to find out if there is at least one
vector with highest priority (depending on PRMV1
or PRMV2 scheduling policy). This 4-bit vector is
used in the priority multiplexer that selects which
vector will proceed to the programmable prior-
ity encoder. The figure shows that the basic
PPE can easily be extended without much overhead
in order to be consistent with the proposed
algorithm.

The input arbiter, Fig. 11, is more complex than
the output arbiter. When a new packet has just ar-
rived to a VOQ, then this queue is selected to be exe-
cuted. Otherwise, the arbiter must select the eligible
VOQi,j corresponding to the minimum occupied
internal buffer column CXPBj. In addition, in case
there are two columns with the same occupancy,
the queue is selected based on the index pointer.
The minimum function is relatively expensive in
terms of delay. To map the minimum function
and the index scheme efficiently in reconfigurable
logic in only one cycle, the following scheme is used.
We select 4 bits from the 32-bit column vector (each
bit shows whether the buffer is occupied) as input to
a Look-Up-Table (LUT) with 3-bits output. The
LUT encodes the number of ones in the 4-bit vector.
If there is only one ‘‘1’’ then the output is ‘‘01’’, if
there are two ‘‘1’’s then the output is ‘‘10’’ and if
three ‘‘1’’s then the output is ‘‘11’’ or if four ‘‘1’’s
then the output is ‘‘100’’. Then, these 3-bit vectors
are added to determine the number of ‘‘1’’s in the
32-bit vector. The sum of ones is used as an input
to a decoder. In case there are zero ‘‘1’’ then the out-
put of the decoder is ‘‘10000’’. If there is only one
‘‘1’’, the output is ‘‘01000’’, etc.

The column selection is a circuit similar to the
output arbiter. If there is at least one vector with
‘‘10000’’, this means that there is at least one col-
umn with all the buffers being empty. Hence, the
000100000000 : 3 ones

. .
 .

000001000000 : 5 ones
000100000000 : 3 ones

000000000001 : 32 ones
000100000000 : 3 ones

. .
 .

. .
 .

Column for the
PPE

Fig. 13. Column selection.
first bit of each input is selected as input to the
PPE. This circuit is better illustrated in Fig. 13. In
this case there are inputs with 3 number of ‘‘1’’,
which means that the 4th column is going to pro-
ceed to the PPE. The area and delay results are
shown in Tables 2 and 3 respectively.

The flow of cells across the buffered crossbar and
scheduling phases is divided into 4 stages as de-
picted in Fig. 14. We use Rocket I/O transceivers
as in [27] to move cells across the VOQ/IBC switch.
Note that a VOQ becomes eligible as soon as it re-
ceives the first block of bytes (8 bytes using Rocket
I/O transceivers) of a cell. Likewise, the status of an
internal crosspoint buffer, XP , becomes ‘‘empty’’ as
soon as the first block of bytes of a cell is being
transferred to the output port. If the external line
speed is 10 Gbps (OC � 192 line rate) and using
the Rocket I/O transceivers4, then each cell needs
44.8 ns5 to move from one stage to the next. Hence,
each stage of the pipeline must be less than 44.8 ns
to complete. Our algorithm meets this timing
requirement and can even allow time for additional
packet processing tasks such as QoS related infor-
mation and flow control.
4 Note that our target FPGA device contains only 24 Rocket
I/Os. In our case, we can make use of 8 standard I/O pins for the
design of a 32 · 32 switch.

5 Normally, at 10 Gbps line rate, an ATM cell would need
42.4 ns to be scheduled. However, the rocket I/O transfers the cell
in blocks of 8 bytes at a time, rounding the last 5 bytes of each
ATM cell to 8 bytes.

Input
Scheduling

Transfer
VOQ -> XP

Output
Scheduling

Transfer
XP -> output port

Input
Scheduling

Transfer
VOQ -> XP

Output
Scheduling

Transfer
XP -> output port

Input
Scheduling

Transfer
VOQ -> XP

Output
Scheduling

Transfer
XP -> output port

Fig. 14. Flow of cells.

L. Mhamdi et al. / Computer Networks 50 (2006) 2271–2285 2283
6. Conclusion

The internally buffered crossbar switch architec-
ture (VOQ/IBC) has been shown to be an attractive
option to overcome the challenges met by the IQ
switch architecture. However, the scheduling
schemes presented for the VOQ/IBC switch have
been just a simple mapping of earlier algorithms,
proposed for the bufferless IQ switch. As a result,
they did not benefit from any of the advantages that
the VOQ/IBC architecture offers. In this paper, we
proposed a set of scheduling schemes that are purely
advocated for the VOQ/IBC switch architecture.
The CBF we proposed bases its decision exclusively
on the internal buffers information. It was shown to
exhibit very good performance and outperforms all
the previously presented schemes. In an attempt to
further reduce the scheduling complexity and sim-
plify the hardware implementation, we proposed
the CAF_PRMV class of practical algorithms. We
addressed the issue of the interaction between the
input line cards and the internal buffers as well as
the matching process between the input scheduler
and the output scheduler. The simulation results
showed that our newly proposed algorithms outper-
form state-of-the-art algorithms in this area. In par-
ticular, the CAF_PRMV1 algorithm performs very
well under all traffic patterns, and was shown to
be the best among all others. Its main advantage lies
in the fact that it is totally stateless. Hence, it re-
quires simple hardware while running at very high
speed. The hardware implementation showed that
our CAF–PRMV class of algorithms can sustain a
10 Gbps line speed for a 32 · 32 VOQ/IBC switch.

Acknowledgement

This work was partly supported by the Hong
Kong RGC grant (HKUST6260/04E).

References

[1] S.T. Chuang, A. Goel, N. McKeown, B. Prabhakar,
Matching output queueing with a combined input output
queued switch, IEEE Journal on Selected Areas in Commu-
nications 17 (06) (1999) 1030–1039.

[2] W.J. Dally, P. Carvey, L. Dennison, The avici terabit switch/
router, in: Proceedings of Hot Interconnects 6, Aug. 1998,
pp. 41–49.

[3] N. McKeown, Scheduling algorithms for input-queued cell
switches, Ph.D. thesis, University of California, Berkeley,
May 1995.

[4] M. Karol, M. Hluchyj, S. Morgan, Input versus output
queuing on a space-division packet switch, IEEE Transac-
tions on Communications 35 (09) (1987) 1337–1356.

[5] T. Anderson, S. Owicki, J. Saxe, C. Thacker, High speed
switch scheduling for local area networks, ACM Transac-
tions on Computer Systems (1993) 319–352.

[6] H.C. Chi, Y. Tamir, Symmetric crossbar arbiters for VLSI
communication switches, IEEE Transactions on Parallel and
Distributed Systems 04 (01) (1993) 13–27.

[7] S. Keshav, R. Sharma, Issues and trends in router
design, IEEE Communications Magazine 36 (09) (1998)
144–151.

[8] H.C. Chi, Y. Tamir, Starvation prevention for arbiters of
crossbars with multi-queue input buffers, IEEE ICC (June)
(1992) 1646–1650.

[9] D.N. Serpanos, P.I. Antoniadis, FIRM: a class of distributed
scheduling algorithms for high-speed ATM switches with
input queues, IEEE Infocom (March) (2000).

[10] A. Mekkittikul, N. McKeown, A starvation-free algorithm
for achieving 100% throughput in an input-queued switch,
ICCCN (Oct.) (1996) 226–231.

[11] N. McKeown, iSLIP scheduling algorithm for input-queued
switches, IEEE Transactions On Networking 07 (02) (1999)
188–201.

[12] Y. Jiang, M. Hamdi, A fully desyncronized round-robin
matching scheduler for a VOQ packet switch architecture, in:
IEEE Workshop on High Performance Switching and
Routing, 2001, pp. 407–411.

[13] A.K. Gupta, L.O. Barbosa, N.D. Gorganas, 16 · 16 Limited
intermediate buffer switch module for ATM networks for B-
ISDN, IEEE Globecom (Dec.) (1991) 939–943.

[14] A.K. Gupta, L.O. Barbosa, N.D. Gorganas, Limited inter-
mediate buffer switch modules and their interconnection for
B-ISDN, IEEE ICC (June) (1992) 1646–1650.

[15] S. Nojima, E. Tsutsui, H. Fukuda, M. Hashimmoto,
Integrated packet network using bus matrix, IEEE Transac-
tions on Communications 05 (08) (1987) 1284–1291.

[16] M. Nabeshima, Performance evaluation of combined input-
and crosspoint-queued switch, IEICE Transaction on Com-
munications B83-B (3) (2000).

[17] L. Mhamdi, M. Hamdi, Output queued switch emulation by
a one-cell-internally buffered crossbar switch, in: EEE
Global Telecommunications Conference, GLOBECOM�03,
Dec. 2003.

2284 L. Mhamdi et al. / Computer Networks 50 (2006) 2271–2285
[18] B. Magill, C. Rohrs, R. Stevenson, Output-queued switch
emulation by fabrics with limited memory, IEEE Journal on
Selected Areas in Communications (May) (2003) 606–615.

[19] S. Chuang, S. Iyer, N. McKeown, Practical algorithms for
performance guarantees in buffered crossbars, IEEE Info-
com (March) (2005).

[20] T. Javadi, R. Magill, T. Hrabik, A high-throughput
algorithm for buffered crossbar switch fabric, IEEE ICC
(June) (2001) 1581–1591.

[21] R. Rojas-Cessa, E. Oki, Z. Jing, H.J. Chao, CIXB-1:
Combined input one-cell-crosspoint buffered switch, in:
Proceedings of the 2001 IEEE WHPSR, 2001, pp. 324–329.

[22] K. Yoshigoe, K.J. Christensen, A parallel-polled virtual
output queued switch with a buffered crossbar, in: IEEE
Workshop on High Performance Switching and Routing,
2001, pp. 271–275.

[23] L. Mhamdi, M. Hamdi, MCBF: A high-performance
scheduling algorithm for buffered crossbar switches, IEEE
Communications Letters 07 (09) (2003) 451–453.

[24] A. Mekkittikul, Scheduling non-uniform traffic in high speed
packet switches and routers, Ph.D. thesis, Stanford Univer-
sity, Nov. 1998.

[25] N. McKeown, A. Mekkittikul, V. Anantharam, J. Walrand,
Achieving 100% throughput in input-queued switch, IEEE
Transactions on Communications 47 (08) (1999).

[26] P. Gupta, N. McKeown, Design and implementation of a
fast crossbar scheduler, IEEE Micro 19 (01) (1999).

[27] K. Yoshigoe, A. Jacob, K.J. Christensen, The RR/RR CICQ
switch: hardware design for 10 Gbps link speed, in: IEEE
International Performance, Computing, and Communica-
tions Conference, April 2003, pp. 481–485.

Lotfi Mhamdi (S�02) received the B.S.
degree in Information Systems Manage-
ment Technology from South University,
Tunisia, in 2000 and the MPhil Degree in
computer science from the Hong Kong
University of Science and Technology
(HKUST), Clear Water Bay, Hong
Kong, in 2002. He is currently working
towards the Ph.D. in Computer Engi-
neering in the Delft University of Tech-
nology, The Netherlands. His research

work spans the area of high-speed networks including the design,

analysis, scheduling, and management of high-speed switches and
Internet routers. He is a student member of IEEE.

Mounir Hamdi received the B.S. degree in
Computer Engineering (with distinction)
from the University of Louisiana in 1985,
and the MS and the Ph.D. degrees in
Electrical Engineering from the Univer-
sity of Pittsburgh in 1987 and 1991,
respectively. He has been a faculty mem-
ber in the Department of Computer Sci-
ence at the Hong Kong University of
Science and Technology (HKUST) since
1991, where he is now Full Professor of

Computer Science, Director of the Computer Engineering Pro-

gram and Director of the Computer Engineering and Networking
Lab. In 1999–2000 he held visiting professor positions at Stanford
University, USA, and the Swiss Federal Institute of Technology,
Lausanne, Switzerland. His general areas of research are in high-
speed wired/wireless networking. Currently, he is working on the
design, analysis, scheduling, and management of high-perfor-
mance Internet switches/routers, algorithm/architecture co-
design, wavelength division multiplexing (WDM) networks/
switches, and high-speed wireless networks. In particular, he is
leading a research team at HKUST that is designing one the
highest capacity chip sets for Terabit switches/routers in the world.

Dr. Hamdi received the best paper award at the International
Conference on Information and Networking in 1998 out of 152
papers. He also supervised the best Ph.D. paper award amongst all
universities in Hong Kong. He received the best 10 lecturers award
(through university-wide student voting for all university faculty
held once a year), the distinguished engineering teaching appre-
ciation award from HKUST, and various grants targeted towards
the improvement of teaching methodologies, delivery and tech-
nology. He is a member of IEEE and ACM.
Christopher Kachris received the diploma
and the M.Sc. in Computer Engineering
from the Technical University of Crete,
Greece in 2001 and 2003 respectively. In
2003 he joined Ellemedia Technologies
in Athens, Greece designing network
processors. Currently, he is working
towards his Ph.D. in Computer Engi-
neering in the Delft University of Tech-
nology, The Netherlands. His research
interests include computer architecture,

network and media processors and reconfigurable logic.
Stephan Wong was born in Paramaribo,
Suriname in 1973. He obtained his Ph.D.
in the Electrical Engineering department
of the Delft University of Technology
(TU Delft), The Netherlands. He is cur-
rently working as an assistant professor at
the Computer Engineering Laboratory at
the Delft University of Technology (TU
Delft), The Netherlands. He has consid-
erable experience in the design of embed-
ded media processors. He has worked also

on microcoded FPGA complex instruction engines and the mod-

eling of parallel processor communication networks. His research
interests include embedded systems, multimedia processors, com-
plex instruction set architectures, reconfigurable and parallel pro-
cessing, microcoded machines, and network processors.
Stamatis Vassiliadis (M�86–SM�92–F�97)
was born in Manolates, Samos,
Greece, in 1951. He is currently a Chair
Professor in the Electrical Engineer-
ing, Mathematics, and Computer Science
(EEMCS) department of Delft Univer-
sity of Technology (TU Delft), The
Netherlands. He previously served in the
Electrical and Computer Engineering
faculties of Cornell University, Ithaca,
NY and the State University of New

L. Mhamdi et al. / Computer Networks 50 (2006) 2271–2285 2285
York (S.U.N.Y.), Binghamton, NY. For a decade, he worked
with IBM, where he was involved in a number of advanced
research and development projects. He received numerous
awards for his work, including 24 publication awards, 15 inven-
tion awards, and an outstanding innovation award for engi-
neering/scientific hardware design. His 72 USA patents rank him
as the top all time IBM inventor.
Dr. Vassiliadis received an honorable mention Best Paper
award at the ACM/IEEE MICRO25 in 1992 and Best Paper
awards in the IEEE CAS (1998, 2001), IEEE ICCD (2001), PDCS
(2002) and the best poster award in the IEEE NANO (2005). He
is an IEEE and ACM fellow and a member of the Dutch
Academy of Science.

	High-performance switching based on buffered crossbar fabrics
	Introduction
	Related work
	The critical internal buffer first algorithm (CBF)
	Notations
	Motivation
	CBF specification
	Performance study

	The current arrival first ndash priority removal algorithms
	CAF specification
	Specification of PRMV1
	Specification of PRMV2
	PRMV variations
	Specification of Pr_Check1
	Specification of Pr_Check2

	Performance study

	Hardware implementation
	Conclusion
	Acknowledgement
	References

